S.Line

M890 SERIES

ЦИФРОВОЙ МУЛЬТИМЕТР

— 3 1/2 DIGITAL MULTIMETER

Инструкция пользователя

СОДЕРЖАНИЕ

Информация по безопасности 1
Символы- 1
Описание передней панели -3
Характеристики 4
Технические характеристики -5
Инструкция пользователя -9
Замена батареи и предохранителя 14
Аксессуары 14

Информация по безопасности

Этот прибор был разработан согласно стандарту IEC－1010 для электронных измерительных приборов с категорией напряжения（КАТ ІІ 600вольт）и класса защиты 2.

СИМВОЛЫ

～AC（Переменный ток）
＝－－DC（Постоянный ток）
Важная информация，обратитесь к инструкции
\rangle Опасное напряжение．
ㄹ Заземление
■ Предохранитель
（Є Соответствие Европейскому стандарту
⿴囗口войная изоляция

Меры безопасности

Чтобы избежать поражения электрическим током соблюдайте следующие правила：
－Не используйте мультиметр если он имеет повреждение корпуса，уделяйте особое внимание гнёздам подключения．
－Проверьте изоляцию щупов，не пользуйтесь неисправными щупами．При необходимости замените щупы
－Не используйте мультиметр если он работает неправильно． Если у вас есть сомнения сдайте мультиметр в сервис．

- Не используйте мультиметр вблизи взрывчатых веществ.
- Никогда не превышайте напряжение на терминалах, более чем рекомендовано в паспорте.
- Если значение измеряемого параметра заранее неизвестно, установите максимальный диапазон.
- Используйте щупы от этой модели
- Соблюдайте осторожность при работе с напряжением с выше 30 вольт переменного и 42 вольт постоянного напряжения.
- Держите пробник за изолированные места
- Подключайте испытательный щуп после подключения общего. Разъединяйте в обратном порядке.
- Отсоединяйте испытательные щупы от цепи при открытии корпуса или крышки батареи.
- Не используйте мультиметр при открытой крышки батареи или неплотно закрытым корпусом.
- Чтобы избежать поражения током из-за неправильного показания прибора заменяйте батарею немедленно при появлении значка ("믄교 ").

ПРЕДУПРЕЖДЕНИЕ

Для избежания повреждения мультиметра следуйте рекомендациям:

- Отключайте питание и разряжайте высоковольтные конденсаторы при измерении сопротивления, прозвоне цепей, диодов или измерении ёмкости.
- Используйте терминалы, функции и диапазоны измерений соответственно инструкции.
- Перед измерением тока, проверьте предохранитель и отключите питание прибора,
- Перед поворотом переключателя Функции/Диапазоны, отсоедините измерительные щупы.
- Перед измерением коэфф. усиления транзистора, отсоедините тестовые щупы от других цепей.
- Отсоедените щупы перед открытием корпуса мультиметра.

ОБСЛУЖИВАНИЕ

- Перед открытием прибора отсоедините тестовые провода от всех источников электрического тока.
- Перед открытием прибора отсоедините тестовые провода от всех источников электрического тока.

F250mA/250V (Fast Blown)•5•20

- Для чистки прибора используйте влажную ткань и мягкое моющее средство. Не используйте абразивы и растворители.

Передняя панель

1. Дисплей LCD
2. Кнопка включения
3. Терминал для измерения ёмкости
4. Терминал для измерения hEF транзисторов
5. Переключатель Функция/Диапазон
6. Терминал для датчика температуры(890C+ \& 890G)
7. Входные терминалы.

ХАРАКТЕРИСТИКИ

Максимальное показание дисплея: число 1999 (3 1/2 цифры) автоматический индикатор полярности

Метод Индикации: LCD дисплей
Метод измерения: АЦП двойного интегрирования
Индикатор перегрузки: "1" на индикаторе LCD
Время измерения: 2-3 раза/сек. (приблизительно)
Рабочая температура: $0^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \sim 104^{\circ} \mathrm{F}\right),<75 \%$ R.H.
Температура хранения: $-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}\right)$, $<75 \%$ R.H.
Напряжение питания: 9в. типа КРОНА (NEDA1604, 6F22)
Индикатор разряда: " $-\boldsymbol{-}$ " символ на LCD
Размер: $88 \cdot 176 \cdot 38(\mathrm{~mm})$
Вес: 310гр. (с батареей)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Точность калибровки гарантирована в течении одного года при $18^{\circ} \mathrm{C} \sim 28^{\circ} \mathrm{C}\left(64^{\circ} \mathrm{F} \sim 82^{\circ} \mathrm{F}\right)$ и влажности до 75%. Точность определяется как:
-([\% от показания]+[Число значащих цифр])

Постоянное напряжение

ДИАПАЗОН	РАЗРЕШЕНИЕ	тОЧНОСть
200 mV	$100 \mu \mathrm{~V}$	$\cdot(0.5 \%+2)$
2 V	1 mV	$\cdot(0.8 \%+2)$
20 V	10 mV	
200 V	100 mV	
1000 V	1 V	$\cdot(1.0 \%+3)$

Входное сопротивление: $10 \mathrm{M} \Omega$.

Переменное напряжение

ДИАПАЗОН	РАЗРЕШЕНИЕ	ТОЧНОСТЬ
2 V	1 mV	
20 V	10 mV	
200 V	100 mV	
750 V	1 V	$\cdot(1.2 \%+5)$

Входное сопротивление: 10М•
Частота $40 \mathrm{~Hz} \sim 400 \mathrm{~Hz}(40 \mathrm{~Hz} \sim 100 \mathrm{~Hz}$ для 200 V и 750 V) Индикация: Среднее значение (эфф. синусоиды).

Постоянный ток

ДИАПАЗОН	РАЗРЕШЕНИЕ	ТОЧНОСТЬ
2 mA	$1 \mu \mathrm{~A}$	
20 mA	$10 \mu \mathrm{~A}$	
200 mA	$100 \mu \mathrm{~A}$	$\cdot(2 \%+2)$
20 A		

Защита от перегрузки:
500mA/250V предохранитель (ДИАПАЗОН 20А)
Максимальный входной ток: 20А (не более 10 секунд)
Максимальное падение напряжения: 200 mV

Переменный ток

ДИАПАЗОН	РАЗРЕШЕНИЕ	ТОЧНОСТЬ
200 mA	$100 \mu \mathrm{~A}$	$\cdot(2 \%+5)$
20 A	10 mA	

Защита от перегрузки:
500mA/250V предохранитель (ДИАПАЗОН 20А)
Максимальный входной ток: 20А (не более 10 секунд)
Индикация: Среднее значение (эфф. синусоиды).
Максимальное падение напряжения: 200 mV

СОПРОТИВЛЕНИЕ

ДИАПАЗОН	РАЗРЕШЕНИЕ	ТОЧНОСТЬ
200•	0.1 -	$\cdot(1.0 \%+10)$
2K•	$1 \cdot$	$\cdot(1.0 \%+5)$
20K•	$10 \cdot$	
200K•	100•	
2M•	1K•	
20M•	10K•	$\cdot(1.2 \%+5)$
200M•	$100 \mathrm{~K} \cdot$	$\cdot(5.0 \%+10)$

Напряжение измерения: менее 700 mV

ЧАСТОТА (M890F \& M890G)

ДИАПАЗОН	РАЗРЕШЕНИЕ	ТОЧНОСТЬ
20 KHz	10 Hz	$\cdot(2.5 \%+10)$

ЕМКОСТЬ

ДИАПАЗОН	РАЗРЕШЕНИЕ	ТОЧНОСТЬ
2000 pF	1 pF	
20 nF	10 pF	$(4 \%+5)$
200 nF	100 pF	
$2 \mu \mathrm{~F}$	1 nF	
$20 \mu \mathrm{~F}$	10 nF	

Напряжение измерения: приблизительно 40 mV RMS.

hFE Транзисторов

ДИАПАЗОН	hFE	Тестовый ток	Тестовое напр.
PNP \& NPN	$0 \sim 1000$	$\mathrm{Ib} \cdot 10 \mu \mathrm{~A}$	Vce $\cdot 2.8 \mathrm{~V}$

Температура ($\mathbf{~} 890 \mathrm{C}+$ \& M890G)

ДИАПАЗОН	РАЗРЕШЕНИЕ	ТОЧНОСТЬ
$-40^{\circ} \mathrm{C} \sim 400^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$\cdot\left(1 \%+4^{\circ} \mathrm{C}\right)$
$400^{\circ} \mathrm{C} \sim 1000^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$\cdot\left(1.5 \%+15^{\circ} \mathrm{C}\right)$

При применении термопары типа "K".

Тест диодов и прозвонка цепей

диАпАзон	ОПИСАНИЕ	Условия теста
$\rightarrow+$	Дисплей показывает \sim обратное напряжение на диоде	Тестовое напряжение на щупах 2,8 вольта при токе 1мА.
\cdot •))	Если сопротивление цепи менее чем 30Л, звучит звуковой сигнал.	Напряжение на щупах. 2.8 V.

ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ

Измерение постоянного напряжения

1. Установите красный щуп в гнездо " V / Ω " и чёрный щуп в гнездо "COM" .
2. Установите переключатель в положение Vㅍㅍ . Если порядок измеряемого напряжения заранее не известен, установите максимальный диапазон, после при необходимости диапазон можно уменьшать для получения более точного показания.
3. Подключите щупы параллельно измеряемой цепи.
4. Показание отображается в вольтах положительной полярности на красном щупе.

Измерение переменного напряжения

1. Установите красный щуп в гнездо "V/ת" и чёрный щуп в гнездо "СОМ"
2. Установите переключатель в положение $\mathrm{V} \sim$. Если порядок измеряемого напряжения заранее не известен, установите максимальный диапазон, после при необходимости диапазон можно уменьшать для получения более точного показания.
3. Подключите щупы параллельно измеряемой цепи.
4. Показание отображается в вольтах .

Измерение постоянного тока

1. Установите чёрный щуп в гнездо "СОМ" и красный щуп в гнездо "mA" . (Если вы предполагаете что измеряемый ток находится в диапазоне между 200 mA и 20A, установите красный щуп в гнездо "20A".)
2. Установите переключатель диапазонов в положение АП Если порядок измеряемого тока заранее не известен, установите максимальный диапазон, после при необходимости диапазон можно уменьшать для получения более точного показания.
3. Подключите щупы последовательно цепи измерения
4. Показание отображается на дисплее при этом положительной полярности на красном щупе.

Измерение переменного тока

1. Установите чёрный щуп в гнездо "СОМ" и красный щуп в гнездо "mA" . (Если вы предполагаете что измеряемый ток находится в диапазоне между 200 mA и 20A, установите красный щуп в гнездо "20А".)
2. Установите переключатель диапазонов в положение А~ Если порядок измеряемого тока заранее не известен, установите максимальный диапазон, после при необходимости диапазон можно уменьшать для получения более точного показания.
3. Подключите щупы последовательно цепи измерения
4. Показание отображается на дисплее.

Измерение сопротивления

1. Установите красный щуп в гнездо "V/ת" и чёрный щуп в гнездо "СОМ" .
2. Установите переключатель в положение Ω.
3. Подключите измерительный щупы к резистору или измеряемой цепи, прочтите показание на дисплее.

Примечание

- Для измерения сопротивления порядка $1 \mathrm{M} \Omega$ мультиметру необходимо несколько секунд для стабилизации напряжения. Это является нормальным для больших значений.

Измерение ёмкости конденсаторов

1. Установите переключатель диапазонов в положение Cx .
2. Перед установкой конденсатора в сокету убедитесь, что конденсатор полностью разряжен.
3. Установите конденсатор в измерительную сокету
4. Прочтите показание на дисплее.

Тест диодов

1. Установите красный щуп в гнездо "V/ת" и чёрный щуп в гнездо "СОМ" . (Полярность красного щупа будет положительной "+").
2. Установите переключатель Функций в положение " $\rightarrow+$ "
3. Подключите красный щуп к аноду диода, а чёрный щуп к катоду. Приблизительное обратное напряжение на диоде будет отображено на дисплее. Если подключение было неправильное на дисплее будет "1".

Прозвонка цепей

1. Установите красный щуп в гнездо "V/ת" и чёрный щуп в гнездо "COM" .
2. Установите переключатель функций в положение "•川)"
3. Подключите щупы к измеряемой цепи, если сопротивление менее 30Ω, звучит звуковой сигнал.

Тест транзисторов

1. Установите переключатель функций в положение "hFE".
2. Определите проводимость транзистора NPN или PNP, определите расположение выводов Э, Б, К и установите в соответствующие гнёзда разъёма hFE на передней панели.
3. Приблизительный коэффициент усиления hFE при токе базы $10 \mu \mathrm{~A}$ и Vкэ= 2.8 V отобразится на дисплее.

Измерение частоты

(M890F \& M890G)

1. Установите переключатель функций в положение "KHz".
2. Установите красный щуп в гнездо "V/ת" и чёрный щуп в гнездо "COM"
3. Подключите щупы параллельно измеряемой цепи.
4. Показание значения частоты отображаются на дисплее.

Измерение температуры (M890C+ \& M890G)

1. Установите термопару типа "K" в гнездо для измерения
2. температуры
3. Установите переключатель диапазонов в положение " ${ }^{\circ} \mathrm{C}$ ".
4. Прижмите термопару к объекту измерения и прочтите показание на дисплее.

Функция автовыключения

Функция автовыключения позволяет продлить жизнь батареи если переключатель диапазонов не переключался более 15 минут, прибор автоматически отключается. Чтобы включить прибор переключите диапазон или нажмите кнопку включения.

Замена батареи и предохранителя

Если на дисплее появится символ "늡 $\boldsymbol{\square}$ " необходимо заменить батарею. Для замены батареи откройте корпус, удалите старую батарею и установите новую соответствующую спецификации: 9 V , NEDA 1604 or 6F22, закройте корпус.
Плавкий предохранитель заменяется в случае если прибор не измеряет ток, для замены предохранителя откройте заднюю крышку прибора и замените на исправный соответствующего типа: F $250 \mathrm{~mA} / 250 \mathrm{~V}$, закройте корпус.

Аксессуары

Инструкция пользователя: 1 шт.
Тестовые щупы: 1 пара.
Батарея типа "Крона" 9V (NEDA 1604 или 6F22) : 1 шт термопара типа K (для M890C+ и M890G): 1 шт.

Сделано в Китае для S-Line .Изготовитель: фирма Zhangzhou Weihua Electronic Co. Сертификат соответствия системы сертификации ГОСТ P на соответствие требованиям ГОСТ Р 51350-99.
Продукция не подлежит обязательной сертификации.

