
## **Quad Darlington switches**

### **Features**

- Four non inverting inputs with enable
- Output voltage up to 50 V
- Output current up to 1.8 A
- Very low saturation voltage
- TTL compatible inputs
- Integral fast recirculation diodes

### **Description**

The L6220 monolithic quad Darlington switch is designed for high current, high voltage switching applications. Each of the four switches is controlled by a logic input and all four are controlled by a common inhibit input. All inputs are TTL-compatible for direct connection to logic circuits.



Each switch consists of an open-collector Darlington transistor plus a fast diode for switching applications with inductive loads. The emitters of the four switches are commonsed. Any number of inputs and outputs of the same device may be paralleled.

The L6220 is mounted in a Fowerdip 12 + 2 + 2 package.

Table 1. Order code

| Onder Gode | Package    |
|------------|------------|
| É-L6220    | Powerdip16 |

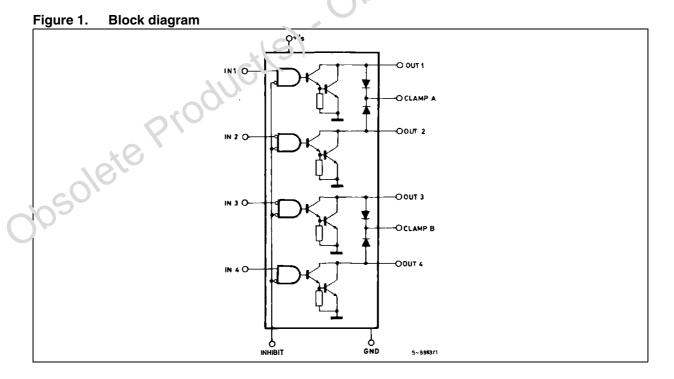



Table 2. Pin description

| Pin N#       | Pin name       | Function                             |  |
|--------------|----------------|--------------------------------------|--|
| 1            | OUT 4          | Output of driver 4                   |  |
| 2            | CLAMP B        | Diode clamp to driver 3 and driver 4 |  |
| 3            | OUT 3          | Output of driver 3                   |  |
| 4, 5, 12, 13 | GND            | Common ground                        |  |
| 6            | OUT 2          | Output of driver 2                   |  |
| 7            | CLAMP A        | Diode clamp to driver 1 and driver 2 |  |
| 8            | OUT 1          | Output of driver 1                   |  |
| 9            | IN 1           | Input to driver 1                    |  |
| 10           | IN 2           | Input to driver 2                    |  |
| 11           | V <sub>S</sub> | Logic supply voltage                 |  |
| 14           | INHIBIT        | Inhibit input to all drivers         |  |
| 15           | IN 3           | Input to driver 3                    |  |
| 16           | IN 4           | Input to driver 4                    |  |

Figure 2. Pin connections

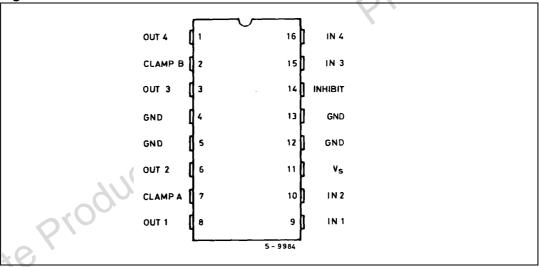



Table 3. Truth table

| Enable | Inputs 1, 4 | Power out | Enable | Inputs 2, 3 | Power out |
|--------|-------------|-----------|--------|-------------|-----------|
| L      | Н           | ON        | L      | L           | ON        |
| L      | L           | OFF       | L      | Н           | OFF       |
| Н      | Х           | OFF       | Н      | Х           | OFF       |

For each input : H = High level

L = Low level

Table 4. Absolute maximum ratings

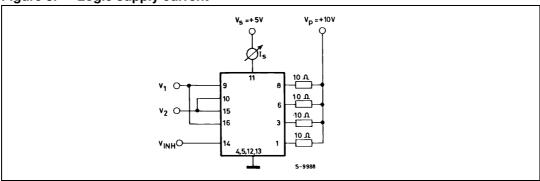
| Symbol                            | Parameter                                                                        | Value          | Unit   |
|-----------------------------------|----------------------------------------------------------------------------------|----------------|--------|
| V <sub>o</sub>                    | Output voltage                                                                   | 50             | V      |
| V <sub>s</sub>                    | Logic supply voltage                                                             | 7              | V      |
| V <sub>IN</sub> , V <sub>EN</sub> | Input voltage, enable voltage                                                    | V <sub>S</sub> |        |
| I <sub>C</sub>                    | Continuous collector current (for each channel)                                  | 1.8            | Α      |
| I <sub>C</sub>                    | Collector peak current (repetitive, duty cycle = 10 % t <sub>on</sub> = 5 ms)    | 2.5            | Α      |
| I <sub>C</sub>                    | Collector peak current (non repetitive, t = 10 μ s)                              | 3.2            | Α      |
| T <sub>op</sub>                   | Operating temperature range (junction)                                           | - 40 to + 150  | °C     |
| T <sub>stg</sub>                  | Storage temperature range                                                        | - 55 to + 150  | °C     |
| I <sub>sub</sub>                  | Output substrate current                                                         | 350            | mA     |
| P <sub>tot</sub>                  | Total power dissipation at T <sub>pins</sub> = 90 °C at T <sub>amb</sub> = 70 °C | 4.3<br>1       | W<br>W |

### Table 5. Thermal data

| Symbol                 | Parameter                                | Value | Unit |      |
|------------------------|------------------------------------------|-------|------|------|
| R <sub>th j-pins</sub> | Thermal resistance junction-pins max.    |       | 14   | °C/W |
| R <sub>th j-amb</sub>  | Thermal resistance junction-ambient max. | SX    | 80   | °C/W |

#### Table 6. Electrical characteristics

|        | Symbol                                   | Parameter                                                                    | Test condition                                                                                                                           | Min. | Тур. | Max.            | Unit |
|--------|------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------------|------|
|        | V <sub>S</sub>                           | Logic supply voltage                                                         |                                                                                                                                          | 4.5  |      | 5.5             | V    |
|        | ı                                        | Logic supply current                                                         | All outputs ON, I <sub>C</sub> = 0.7 A                                                                                                   |      |      | 20              | mA   |
|        | I <sub>s</sub>                           | Logic supply current                                                         | All outputs OFF                                                                                                                          |      |      | 20              | mA   |
|        | V <sub>CE(sus)</sub>                     | Output sustaining voltage                                                    | $I_C = 100 \text{ mA}, V_{IN} = V_{IN}H$                                                                                                 | 46   |      |                 | V    |
|        | I <sub>CEX</sub>                         | Output leakage current                                                       | V <sub>CE</sub> = 50 V, V <sub>IN 1.4</sub> = V <sub>IN</sub> H                                                                          |      |      | 1               | mA   |
| ansole | V <sub>CE(sat)</sub>                     | Collector emitter saturation voltage (one input on ; all others inputs off.) | $V_{s} = 4.5 \text{ V}$ $V_{IN 2.3} = V_{IN}L, V_{INH} = V_{INH}L$ $I_{C} = 0.6 \text{ A}$ $I_{C} = 1 \text{ A}$ $I_{C} = 1.8 \text{ A}$ |      |      | 1<br>1.2<br>1.6 | V    |
| Ob     | V <sub>IN</sub> L,<br>V <sub>INH</sub> L | Input low voltage                                                            |                                                                                                                                          |      |      | 0.8             | ٧    |
|        | I <sub>IN</sub> L, I <sub>INH</sub> L    | Input low current                                                            | $V_{IN} = V_{INL}, V_{EN} = V_{ENL}$                                                                                                     |      |      | - 100           | μΑ   |
|        | V <sub>IN</sub> H,<br>V <sub>INH</sub> H | Input high voltage                                                           |                                                                                                                                          | 2.0  |      |                 | ٧    |
|        | I <sub>IN</sub> H, I <sub>INH</sub> H    | Input high current                                                           | $V_{IN} = V_{IN}H, V_{INH} = V_{INH}H$                                                                                                   |      |      | ±10             | μА   |


Table 6. Electrical characteristics (continued)

| Symbol               | Parameter                      | Test condition                                                                                  | Min. | Тур. | Max.       | Unit   |
|----------------------|--------------------------------|-------------------------------------------------------------------------------------------------|------|------|------------|--------|
| I <sub>R</sub>       | Clamp diode leakage current    | $V_R = 50 \text{ V}, V_{INH} = V_{INH}H$                                                        |      |      | 100        | μА     |
| V <sub>F</sub>       | Clamp diode forward voltage    | I <sub>F</sub> = 1 A<br>I <sub>F</sub> = 1.8 A                                                  |      |      | 1.6<br>2.0 | V<br>V |
| t <sub>d (on)</sub>  | Turn on delay time             | $V_p = 5 \text{ V}, R_L = 10 \Omega$                                                            |      |      | 2          | μS     |
| t <sub>d (off)</sub> | Turn off delay time            | $V_p = 5 \text{ V}, R_L = 10 \Omega$                                                            |      |      | 5          | μS     |
| Δl <sub>s</sub>      | Logic supply current variation | $V_{IN} = 5 \text{ V}, V_{EN} = 5 \text{ V}$<br>$I_{out} = -300 \text{ mA for each}$<br>channel |      |      | 120        | mA     |

L6220 Test circuits

## 1 Test circuits

Figure 3. Logic supply current



Set  $V_1 = 4.5$  V,  $V_2 = 0.8$  V,  $V_{INH} = 4.5$  V or  $V_1 = 0.8$  V,  $V_2 = 4.5$  V,  $V_{INH} = 0.8$  V for  $I_S$  (all outputs off)

Set  $V_1$  = 2 V,  $V_2$  = 0.8 V,  $V_{IN}$  = 0.8 V for  $I_S$  (all outputs on)

Figure 4. Output sustaining voltage

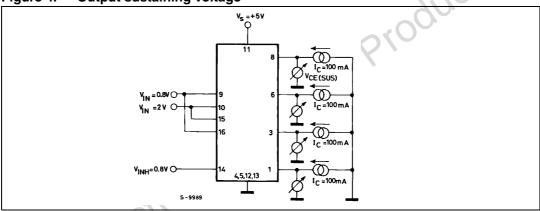
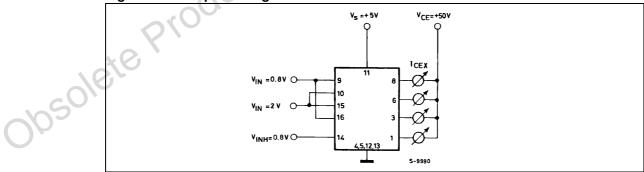




Figure 5. Output leakage current



Test circuits L6220

Figure 6. Collector-emitter saturation voltage

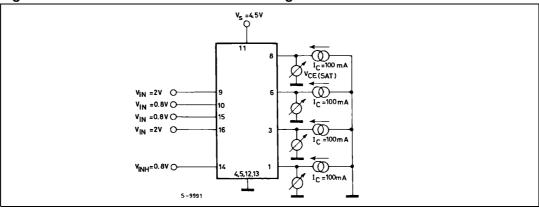
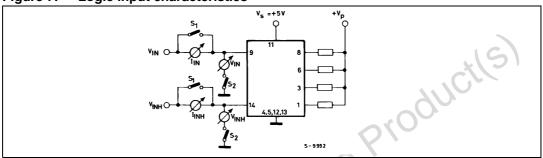
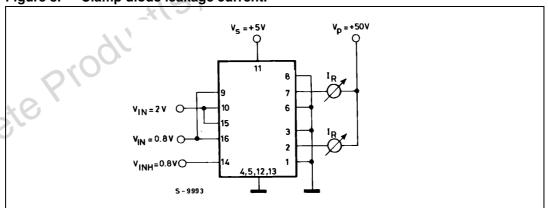




Figure 7. Logic input characteristics




Set  $S_1$ ,  $S_2$  open,  $V_{IN}$ ,  $V_{INH} = 0.8 \text{ V}$  for  $I_{IN}$  L,  $I_{INH}$  L

Set  $S_1$ ,  $S_2$  open,  $V_{IN}$ ,  $V_{INH}$  = 2 V for  $I_{IN}$  H,  $I_{INH}$  H

Set  $S_1$ ,  $S_2$  close,  $V_{IN}$ ,  $V_{INH}$  = 0.8 V for  $V_{IN}$  L,  $V_{INH}$  L

Set  $S_1,\,S_2$  close,  $V_{IN},\,V_{INH}$  = 2 V for  $V_{IN}\,H,\,V_{INH}\,H$ 

Figure 8. Clamp diode leakage current.



L6220 Test circuits

Figure 9. Clamp diode forward voltage

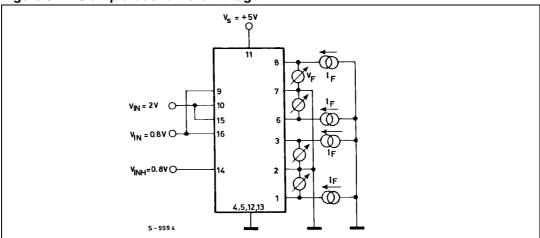



Figure 10. Switching times test circuit

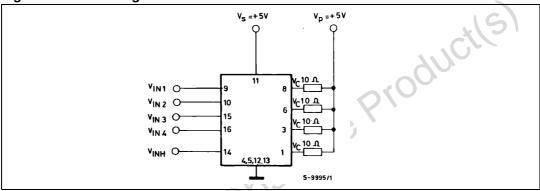
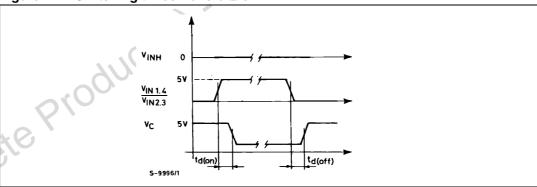




Figure 11. Switching times waveforms



Test circuits L6220

Figure 12. Collector saturation voltage versus Figure 13. Free-wheeling diode forward collector current voltage versus diode current

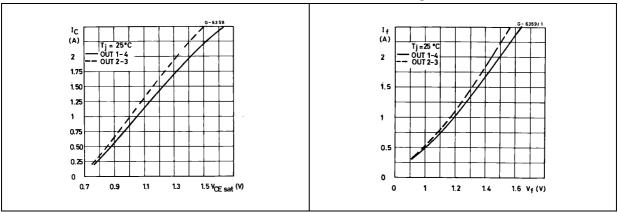



Figure 14. Collector saturation voltage versus Figure 15. junction temperature at IC = 1 A voltage versus junction temperature at IF = 1 A

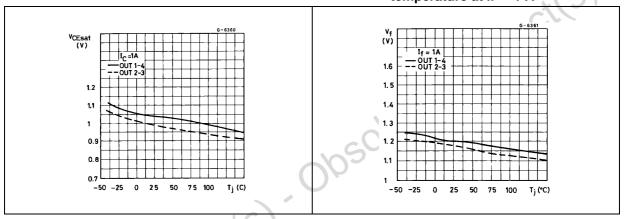
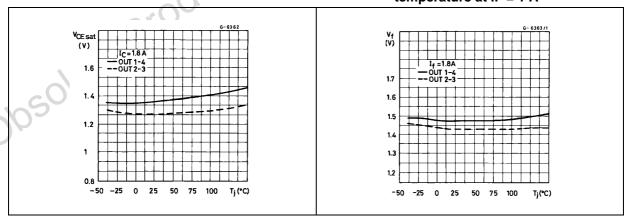




Figure 16. Collector saturation voltage versus Figure 17. junction temperature at IC = 8 A voltage versus junction temperature at IF = 1 A



## 2 Application information

When inductive loads are driven by L6220, a zener diode in series with the integral free-wheeling diodes increases the voltage across which energy stored in the load is discharged and therefore speeds the current decay *Figure 18*.

Figure 18. Inductive load driver

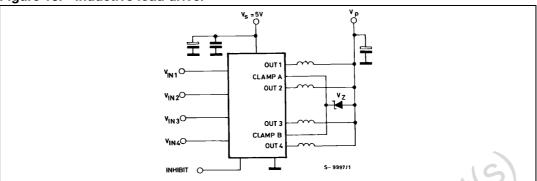
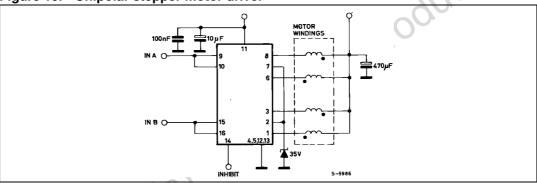
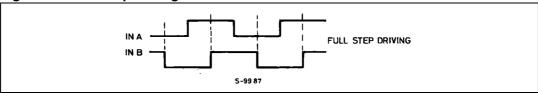
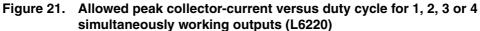
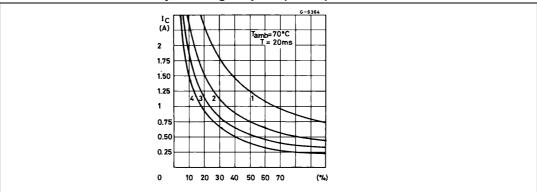




Figure 19. Unipolar stepper motor driver




For reliability it is suggested that the zener is chosen so that  $V_p + V_z < 35 \text{ V}$ .


The reasons for this are two-fold:


- 1. The zener voltage changes in temperature and current.
- 2. The instantaneous power must be limited to avoid the reverse second breakdown.

The particular internal logic allows an easier full step driving using only two input signals.

Figure 20. Full step driving







Obsolete Product(s). Obsolete Product(s)

10/14 Doc ID 1378 Rev 3

### 3 Mounting instructions

The Rth j-amb of the L6220 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (*Figure 22*) or to an external heatsink (*Figure 23*).

The diagram of *Figure 24* shows the maximum dis-sipable power Ptot and the Rth j-amb as a function of the side " a" of two equal square copper areas having a thickness of  $35\mu$  (1.4 mils). During soldering the pins temperature must not exceed 260 °C and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 22. Example of P.C. board copper area Figure 23. External heatsink mounting which is used as heatsink example

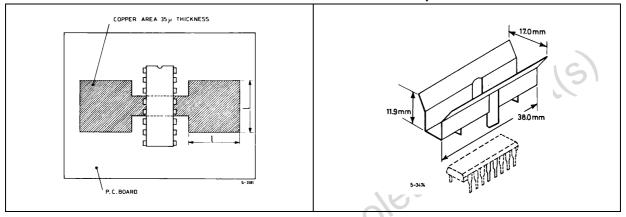
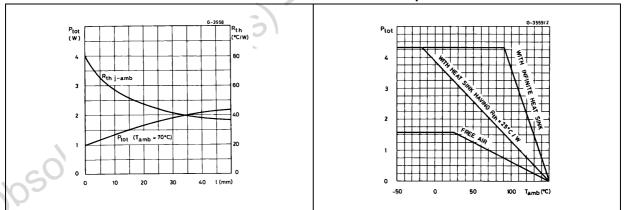




Figure 24. Maximum dissipable power and junction to ambient thermal resistance versus side " $\alpha$ "

Figure 25. Maximum allowable power dissipation versus ambient temperature



inch mm **OUTLINE AND** DIM. **MECHANICAL DATA** MIN. TYP. MAX. MIN. TYP. MAX. a1 0.51 0.020 0.77 0.030 В 1.65 0.065 0.5 0.020 b b1 0.25 0.010 D 20 0.787 8.5 0.335 е 2.54 0.100 17.78 0.700 еЗ 0.280 7.1 0.201 1 5.1 L 3.3 0.130 DIP<sub>16</sub> 1.27 0.050 b1 Ε

Figure 26. DIP16 mechanical data & package dimensions

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

L6220 Revision history

# 4 Revision history

Table 7. Document revision history

| Date        | Revision | Description of changes                                                                           |
|-------------|----------|--------------------------------------------------------------------------------------------------|
| 01-Sep-2003 | 1        | First issue                                                                                      |
| 01-Jul-2004 | 2        | Cancelled the L6220N part number and the relative references.                                    |
| 01-301-2004 | 2        | Changed the style-look following the new "Corporate Technical Pubblications Design Guide" rules. |
| 01-Jun-2010 | 3        | Changed the order code to E-L6220 on page 1.                                                     |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 Doc ID 1378 Rev 3