

The BA718/BA728 is a monolithic integrated circuit consisting of a dual operational amplifier with internal phase compensation. It operates over the wide range of 3~18V (±1.5~±9V) and offers high performance from a single power supply including the negative supply, in the in-phase mode when the power supply voltage is within the input level range.

The current required for this device with V_{CC} of 6V and V_{EE} of -6V is 1.2mA, representing a 50% cut in required power as compared with the BA4558.

Features

- 1. Operates from a single power supply.
- 2. Low power consumption
- 3. The same pin configuration as the general purpose BA4558 is used.
- 4. Supply voltage range of 3~18V when operating from a single supply
- 5. Supply voltage range of ±1.5~±9V when operating from a dual supply
- 6. Short-protected output circuit
- AB Class operation is used in the final stage to reduce crossover distortion to a minimum.
- 8. Typical input bias current is a low 10mA.
- Two independent amplifiers are housed in a single package.
- 0. Internal phase compensation

Applications

- 1. Ground-sensing small-signal amplifiers
- Control amplifiers such as those for motor drive applications which require a high phase margin
- 3. Low-power, low-voltage amplifiers
- Amplifiers used to drive capacitive loads
- 5. Other electronic circuits

Dimensions (mm)

BA718

BA728

Block Diagram

Circuit Diagram

Fig. 5

Absolute Maximum Ratings ($T_a = 25^{\circ}C$)

Parameter	Symbol	Limits	Unit	
Supply voltage	Vcc	2525	٧	
Differential input voltage	V_{id}	2525	٧	
In-phase input voltage range	V _{icm}	−0.3~+25	V	
Power dissipation	Pd	450	mW	
Operating temperature	T _{opr}	-20~+70	°C	
Storage temperature	T _{stg}	-55~+125	°C	

^{*} Derating is done at $4.5 \text{mW}/^{\circ}\text{C}$ for operation above $T_a = 25 ^{\circ}\text{C}$.

Electrical Characteristics ($T_a = 25^{\circ}C$, $V_{CC} = 6V$, $V_{EE} = -6V$)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input offset voltage	V _{IO}		2	10	mV.	
Input offset current	l _{IO}	_	ı	50	nA	
Inpt bias current	l _B	-	10	250	nA	-
In-phase input voltage range	V _{ICM}	VEE		V _{CC} -1.5	٧	
Supply current	Icc		1.2	2.0	mA	
Large-signal voltage gain	A _V	86	100		dB	$R_L \geqslant 2k\Omega$
Output voltage amplitude	Vo	±3.0	±4.5	_	V	$R_L = 2k\Omega 0$
Common mode rejection ratio	CMR	70	90	_	dB	
Supply variation rejection ratio	SVR	_	30	150	μV/V	
Channel separation	Sep	_	120		dB	
Output current (source)	losource	-	20	_	mA	$V_{IN}^{+} = 1V, V_{IN}^{-} = 0V$
Output current (sink)	losink	_	20		mA	$V_{IN}^- = 1V, V_{IN}^+ = 0V$

Note: Because the 1st stage uses a PNP transistor input, the input bias current is taken as flowing from the IC.

Electrical Characteristic Curves

Fig. 6 Supply current vs. supply voltage

Fig. 7 Input bias current vs. supply voltage

Fig. 8 Voltage gain vs. supply voltage