
SPECIFICATIONS FOR APPROVAL

13W MCP (Warm White/ 3,000K)

MODEL NAME: LEMWM18680LG00

APPROVAL	REMARK	APPENDIX

Designed	Checked	Approved

•	SPECIFICATION							
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716					
REG.DATE	REG.DATE 2012. 04. 19		0.0					
REV.DATE		PAGE	2 /20					

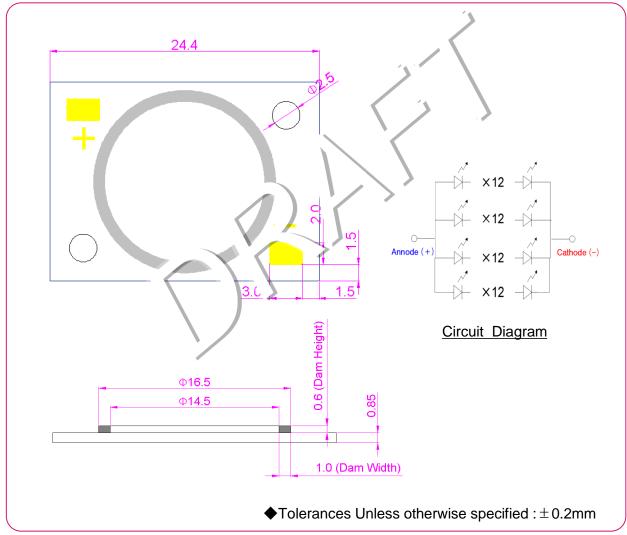
Change History of Revision

Revision	Date	Contents of Revision Change	Remark
Rev. 0.0	'12.04.19	New establishment	
		()	
		9	

	SPECIF	ICATION		
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-	1716
REG.DATE	2012. 04. 19	REV. No	0	.0
REV.DATE		PAGE	3 .	/20
CONTENT	S			
1. Features				4 / 20
2. Outline dir	nensions			4 / 20
3. Application	าร		<i>></i>	5 / 20
4. Characteri	istics (Ta = 25 ℃)	>		5 / 20
5. Absolute N	Maximum Ratings			5 / 20
6. Chromatici	ty on the 1931 CIE Curve			6 / 20
7. Performan	ce Groups - Chromaticity	>		7 / 20
8. Typical Cha	aracteristic Curves			9 / 20
9. Reliability	Test Items and Conditions			11 / 20
10. Packing a	and Marking of Product			12 / 20
11. Cautions	on use	,		15 / 20

19 / 20

12. Reflow Soldering Characteristics


•	SPECIFICATION							
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716					
REG.DATE	REG.DATE 2012. 04. 19		0.0					
REV.DATE		PAGE	4 /20					

1. Features

- High flux power LED COB module
- Compact design (18.0mmX24.0mmX1.5Tmm)
- -110° light distribution pattern, uniform illumination
- Low thermal resistance Rth,j-board < 2.0 K/W (25 °C)

2. Outline Dimensions

(unit:mm)

•	SPECIFICATION							
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716					
REG.DATE	REG.DATE 2012. 04. 19		0.0					
REV.DATE		PAGE	5 /20					

3. Applications

- Indoor Lighting (Bulb, Down light, Spot light)

4. Characteristics

(Ta=25°C)

Items	Symbol	Min Typ		Max	Unit
All data for Ta=25 °C, IF=340mA					
Forward Voltage *1)	VF	36.5	38.0	39.5	V
Luminance Flux *1)	Φ_{V}	1,180	1,290		lm
Luminous Efficacy	lm/W	90	100	-	lm/W
Color Temperature *1)	ССТ	2,870	3,045	3,220	K
Color Rendering Index *1)	Ra	80	83	-	-
Viewing Angle *1)	2Θ1/2	- /	115	-	deg
Thermal Resistance *2)	Rth j-c	- \	2.0	> -	°C/W

- * These values measured by Optical Spectrum Analyzer of LG Innotek Co., LTD Tolerances are followings as below
 - Luminous Flux (lm) : \pm 20%, CIE Value : \pm 0.01, CRI : \pm 2

If the maximum temperature limits are exceeded, the life of the module will be greatly reduced or the module may be damaged

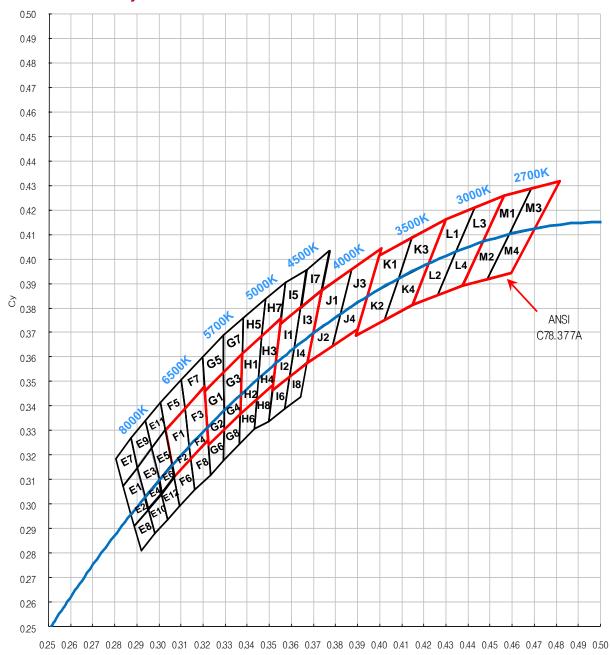
- *1) These values measured without heat sink
- *2) These values is allowed to measure with a heat sink of aluminum

5. Absolute Maximum Ratings

(Ta=25℃)

			,
Items	Symbol	Rating	Unit
Input Power	Pi	30	W
Forward Current	IF	680	mA
Operating Temperature	Topr	-30 ~ +85	${\mathbb C}$
Storage Temperature	Tstg	-40 ~ + 100	${\mathbb C}$
Case Temperature *2)	Tc	100	${\mathbb C}$
Junction Temperature *3)	Tj	150	${\mathbb C}$

^{*1)} Input Power and Forward current are the values when the LED is used within the range of the derating curve in this data sheet.



^{*2)} Refer to 2. Outline dimensions for Tc measurement point

^{*3)} D.C Current: $Ti = Tc + Ri-c \times Pi$

•	SPECIFICATION						
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716				
REG.DATE	2012. 04. 19	REV. No	0.0				
REV.DATE		PAGE	6 /20				

6. Chromaticity on the 1931 CIE Curve

Сх

[•]Chromaticity coordinate groups are tested at a current pulse duration of 300 ms and a tolerance of ± 0.01 .

[•]ANSI Cool/Neutral/Warm white

•	SPECIFICATION						
MODEL	LEMWM18680LG00	CLD-1716					
REG.DATE	2012. 04. 19	REV. No	0.0				
REV.DATE		PAGE	7 /20				

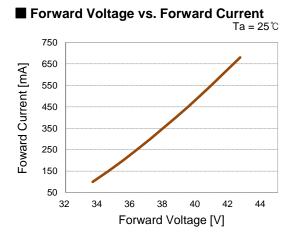
7. Performance Group - Chromaticity

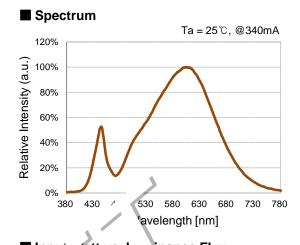
Rank of CIE Value (@400mA)

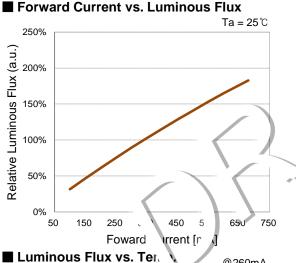
ССТ	Rank	CIE X	CIE Y	ССТ	Rank	CIE X	CIE Y	ССТ	Rank	CIE X	CIE Y			
		0.4562	0.4260			0.3548	0.3736			0.3207	0.3462			
	M1	0.4687	0.4289		11	0.3641	0.3804		G1	0.3291	0.3538			
		0.4586	0.4103		l	0.3611	0.3638			0.3292	0.3382			
		0.4465	0.4071			0.3526	0.3575			0.3217	0.3314			
		0.4465	0.4071	ŀ		0.3526	0.3575			0.3217	0.3314			
	M2	0.4586	0.4103	-	12	0.3611	0.3638		G2	0.3292	0.3382			
2700K		0.4483 0.4373	0.3918 0.3893	-		0.3590 0.3512	0.3521 0.3465			0.3293 0.3222	0.3305 0.3243			
(2725K		0.4373	0.3693	1		0.3641	0.3403			0.3222	0.3538			
±145K)		0.4813	0.4319	1		0.3736	0.3874			0.3376	0.3616			
· ·	М3	0.4700	0.4126	1	13	0.3697	0.3697		G3	0.3369	0.3449			
		0.4586	0.4103	1		0.3611	0.3638			0.3292	0.3382			
		0.4586	0.4103	1		0.3611	0.3638			0.3292	0.3382			
	M4	0.4700	0.4126		14	0.3697	0.3697		G 4	0.3369	0.3449			
	1414	0.4593	0.3944	4500K	14	0.3670	0.3578	5700K	G4	0.3366	0.3369			
		0.4483	0.3918			0.3590	0.3521			0.3293	0.3305			
		0.4299	0.4165	(4503K		0.3571	0.3907	(5065K		0.3196	0.3602			
	L1	0.4430	0.4212	±243K)	15	0.3668	0.3957	±355K)	G5	0.3290	0.3690			
		0.4344	0.4032		"	0.3641	0.3804			0.3291	0.3538			
-		0.4221	0.3984	l		0.3548	0.3736			0.3207	0.3462			
		0.4221	0.3984			0.3512	0.3465			0.3222	0.3243			
	L2	0.4344 0.4260	0.4032	-	16	0.3590	0.3521	· >	G6	0.3293	0.3305			
3000K		0.4260	0.3853 0.3814	1		0.3567 0.3495	0.3389 0.3339			0.3290 0.3231	0.3180 0.3120			
(3045K		0.4430	0.4212	1		0.3668	0.3359			0.3290	0.3690			
±175K)		0.4562	0.4260	1		0.3771	0.4034			0.3381	0.3762			
· ·	L3	0.4465	0.4071	1	17	0.3736	0.3874		G7	0.3376	0.3616			
		0.4344	0.4032	1		0.3641	0.3804			0.3291	0.3538			
		0.4344	0.4032	1		0.3590	0.3521			0.3293	0.3305			
		0.4465	0.4071	1	10	0.3670	0.3578			0.3366	0.3369			
	L4	0.4373	0.3893	0	0.3640	0.3440		G8	0.3361	0.3245				
		0.4260	0.3853			0.3567	0.3389			0.3290	0.3180			
		0.3996	0.4015			0.3376	0.3616			0.3028	0.3304			
	K1	0.4146	0.4089		H1	0.3463	0.3687		F1	0.3115	0.3391			
		0.4082	0.3922			0.3447	0.3513		F1	0.3136	0.3237			
-		0.3941	0.3848	\			\setminus \longleftarrow		0.3369	0.3449			0.3059	0.3160
		0.3941	0.3848		N.	0.3369	0.3449			0.3059	0.3160			
050016	K2	0.4082 0.4017	0.3922 0.3752		H1 H2	0.3447 0.3440	0.3513 0.3427		F2	0.3136 0.3144	0.3237 0.3186			
3500K		0.4017	0.3690			0.3366	0.3427			0.3068	0.3113			
(3465K		0.4146	0.4089	1 1	-	0.3463	0.3687			0.3115	0.3391			
±245K)		0.4299	0.4165			0.3551	0.3760			0.3205	0.3481			
	K3	0.4221	0.3984		H3	0.3526	0.3575		F3	0.3217	0.3314			
		0.4082	0.3922			0.3447	0.3513			0.3136	0.3237			
		0.4082	0.3922			0.3447	0.3513			0.3136	0.3237			
	K4	0.4221	0.3984		H4	0.3526	0.3575		F4	0.3217	0.3314			
	N4	0.4147	0.3814	5000K	П4	0.3515	0.3487	6500K	Г4	0.3221	0.3261			
		0.4017	0.3752			0.3440	0.3427			0.3144	0.3186			
		0.3736	0.3874	(5028K		0.3381	0.3762	(6530K		0.3005	0.3415			
	J1	0.3870	0.3958	±283K)	Н5	0.3480	0.3840	±510K)	F5	0.3099	0.3509			
		0.3819	0.3776			0.3463	0.3687			0.3115	0.3391			
-		0.3697	0.3697			0.3376	0.3616			0.3028	0.3304			
		0.3697	0.3697	1		0.3366	0.3369			0.3068	0.3113			
4000K	J2	0.3819	0.3776	-	H6	0.3440	0.3427		F6	0.3144	0.3186			
		0.3783 0.3670	0.3646 0.3578	1		0.3429 0.3361	0.3307 0.3245			0.3161 0.3093	0.3059 0.2993			
(3985K		0.3870	0.3958	1		0.3480	0.3245			0.3093	0.2993			
±275K)		0.3870	0.3958	1		0.3480	0.3840			0.3099	0.3602			
	J3	0.4000	0.3848	1	H7	0.3551	0.3760		F7	0.3205	0.3481			
		0.3819	0.3776	1		0.3463	0.3687			0.3203	0.3391			
		0.3819	0.3776	1		0.3440	0.3427	1		0.3144	0.3186			
		0.3941	0.3848	1	,,,	0.3515	0.3487		F	0.3221	0.3261			
	J4	0.3898	0.3716	1	H8	0.3495	0.3339	1	F8	0.3231	0.3120			
- 1		0.3783	0.3646	1	1	0.3429	0.3307	1	I	0.3161	0.3059			

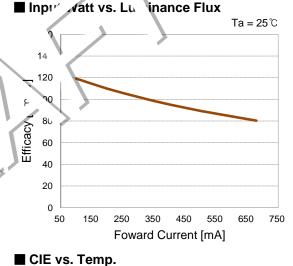
SPECIFICATION				
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716	
REG.DATE	2012. 04. 19	REV. No	0.0	
REV.DATE		PAGE	8 /20	

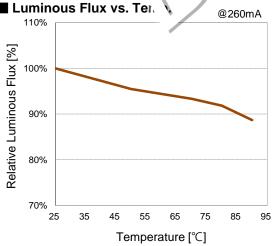
7. Performance Group - Chromaticity (Continued)

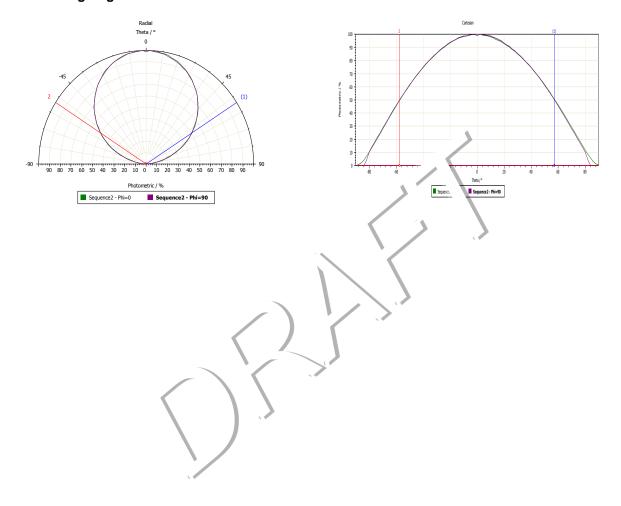

ССТ	Rank	CIE X	CIE Y	ССТ	Rank	CIE X	CIE Y	ССТ	Rank	CIE X	CIE Y
		0.2835	0.3075			0.2803	0.3185				
	E1	0.2772	0.2992		E7	0.2735	0.3100				
	E1	0.2807	0.2884		E/	0.2772	0.2992				
		0.2870	0.2957			0.2835	0.3075				
		0.2870	0.2957			0.2885	0.2910				
	E2	0.2807	0.2884		E8	0.2824	0.2840				
	E2	0.2824	0.2840]	=0	0.2860	0.2740				
		0.2885	0.2910			0.2920	0.2810				
		0.2900	0.3150]		0.2870	0.3270				
	E3	0.2835	0.3075]	E9	0.2803	0.3185				
8000K	ES	0.2870	0.2957	8000K	E9	0.2835	0.3075				
		0.2935	0.3029			0.2900	0.3150				
(8020K		0.2935	0.3029	(8020K		0.2950	0.2980				
±980K)	E4	0.2870	0.2957	±980K)	E10	0.2885	0.2910				
	E4	0.2885	0.2910]	EIU	0.2920	0.2810		1		
		0.2950	0.2980			0.2980	0.2880				
		0.2965	0.3230			0.2938	0.3343				
	E5	0.2900	0.3150]	E11	0.2870	0.3270				
	E9	0.2935	0.3029]	E11	0.2900	0.3150				
		0.3000	0.3100			0.2965	0.3230				
		0.3000	0.3100]		0.3010	0.3045				
	E6	0.2935	0.3029]	E12	0.2950	0.2980				
	_ ⊏6	0.2950	0.2980]	EIZ	0.2980	0.2880				
		0.3010	0.3045			0.3037	0.2937	4			


**** Model name method: Please refer to the following example Model Name:** LEMWM18<u>5</u> 80 LG00


Spec of Luminous Flux
Spec of CRI
Spec of CIE


SPECIFICATION					
MODEL	LEMWM18680LG00	CLD-1716			
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	9 /20		


8. Typical Characteristic Curves



SPECIFICATION				
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716	
REG.DATE	2012. 04. 19	REV. No	0.0	
REV.DATE		PAGE	10 /20	

8. Typical Characteristic Curves (Continued)

■ Viewing Angle

SPECIFICATION				
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716	
REG.DATE	2012. 04. 19	REV. No	0.0	
REV.DATE		PAGE	11 /20	

9. Reliability Test Items and Conditions

9-1. Criteria for Judging the Damage

lan	Cymhal	Toot Condition	Lir	mit
Item	Symbol	Test Condition	Min	Max
Forward Voltage	VF	IF = 340mA	S × 0.80	S × 1.20
Luminous Flux *1	Фу	IF = 340mA	S × 0.85	-
Luminous Flux II *2	Фу	IF = 340mA	S × 0.70	-

^{*} U.S.L: Upper Spec. Limit, S: Initial Value

9-2. Item and Results of Reliability Test

No	Item	Test Condition	Test Hours/ Cycles	Sample No	Ac/Re
1	Steady State Operating Life*1	Ta=25℃, I _F =340 [mA]	1000hr	22 pcs	0/1
2	High Temp. Humidity Life*2	Ta=85 ℃ ,85% RH,I _F =340 [mA]	1000hr	22 pcs	0/1
3	Steady State Operating Life of High Temperature*2	Ta=85℃, I _F =340 [mA]	1000hr	22 pcs	0/1
4	Steady State Operating Life of Low Temperature*2	Ta= -30 ℃, I _F =340 [mA]	1000hr	22 pcs	0/1
5	High Temp. Storage*2	100℃	1000hr	22 pcs	0/1
6	Low Temp. Storage*2	-40℃	1000hr	22 pcs	0/1
7	Temperature Cycle*2	-40 ℃ (30min) ~ 25 ℃ (5min) ~ 100 ℃ (30min) ~ 25 ℃ (5min)	100cycle	22 pcs	0/1
8	Thermal Shock*2	100°C(30min) ~ -40°C(30min)	100cycle	22 pcs	0/1
9	Resistance to Soldering Heat *2 (Reflow Soldering)	Tsld = 260 ℃, 10s (pre treat. 30 ℃, 70%, 168hr)	1 times	22 pcs	0/1
10	Vibration*2	200m/s ² ,100~2000Hz(sweep 4min) 48min, 3 directions	4 times	22 pcs	0/1

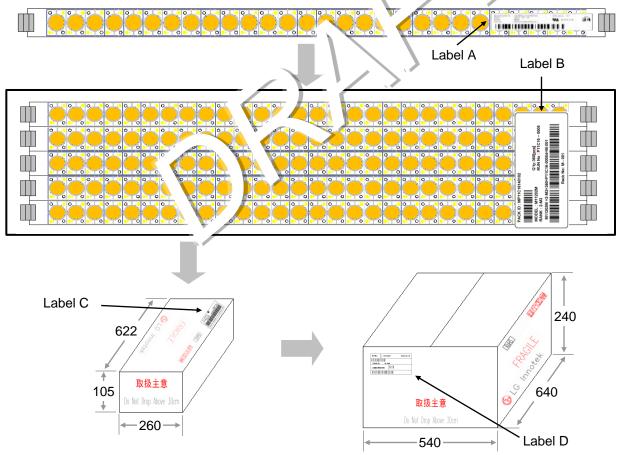
^{*}The operating test is allowed with a heat sink of aluminum

SPECIFICATION				
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716	
REG.DATE	2012. 04. 19	REV. No	0.0	
REV.DATE		PAGE	12 /20	

10. Package and Marking of Products

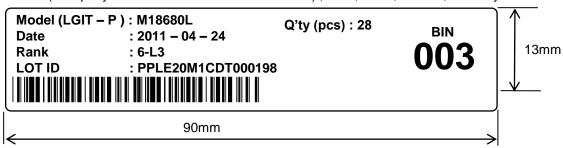
(unit:mm)

10-1. Tube Outline Dimension


Packing Materials :Tube : PET

- ✓ Dimension of Tube : 540 x 26.6 x 5.5
- ✓ Insert Direction : 28units Per Tube

10-2. Packing Specifications


A rubber band ties the 5 Tubes (the number of PKGs are 140 pcs) are an in that packed in a vacuum seal off Packing Bag along with desiccants (Silicagel). Packing ag (total maximum number of products are 1,120 pcs) packed in an inner box are 4 inner boxe are put into an outer box. (total maximum number of products are 4,480 pcs)

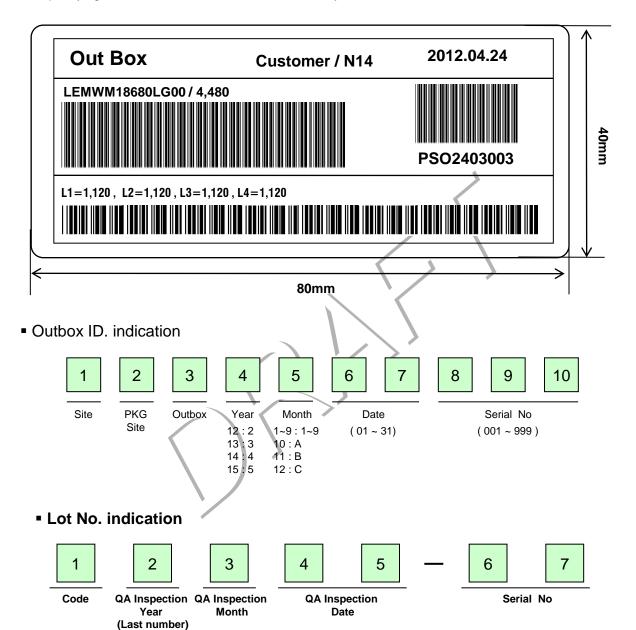
•	SPECIFICATION				
MODEL	LEMWM18680LG00	CLD-1716			
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	13 /20		

*. Label A (Tube Label)

Model(Company's Name - Location of manufacture), Date, Rank, LOT ID, Quantity

Label B (Packing Bag)

PACK ID, MODEL, RANK, Quantity, RUN No, Rack No


Label C (Inner Box Label)

INNER BOX ID, MODEL, Quantity, Date, Rank

SPECIFICATION					
MODEL	CLD-1716				
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	14 /20		

Label D (Out Box Label)
 Specifying Customer, Date, Model Name, Quantity, Customer Part no, Outbox ID

 $(01 \sim 31)$

 $(01 \sim 99)$

(1, 2, 3, 4, 5,

6, 7, 8, 9, 0)

(1, 2, 3, 4,

5, 6, 7, 8, 9, X, Y, Z)

SPECIFICATION					
MODEL	CLD-1716				
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	15 /20		

11. Cautions on use

11-1. Over-current-proof

Customer must apply resistors for protection, others slight voltage shift will cause big current change. (Burn out will happen)

LG Innotek will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit if use to exceed the absolute maximum ratings, or not keep the matters that demand special attention.

11-2. For the Storage

- Proper temperature and RH conditions for storage are : 5 $^{\circ}$ C ~35 $^{\circ}$ C , RH 60%.
- Do not open moisture-proof bag before the products are ready to use.
- Store products in a moisture-proof bag with a desiccant (Silica gel) after open.
- These products should be used within 168 hours after opening the bag based upon storage condition.
- These products must be baked to remove moisture before using them if the Silica gel loses its color. Conditions for baking are $60\pm5\,^{\circ}\mathrm{C}$, 20% (RH) and 24 hours maximum. (For reeled status without bag)

11-3. For the Usage

- LED PKG should not be used in directly exposed environment containing hazardous substances.
- The LEDs has silver plated metal parts. The silver plating become tarnished when being exposed to an environment which contains corrosive gases.
- After assembly and during use, silver plating can be affected by the corrosive gases emitted by components and materials in close proximity of the LEDs within an end product, and the gases entering into the product from the external atmosphere.
- Do not expose the LEDs to corrosive atmosphere during storage and using.
- Avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur.
- In designed a circuit, the current through each LED must not exceed the absolute maximum rating.

SPECIFICATION					
MODEL	MODEL LEMWM18680LG00 DOCUMENT No CI				
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	16 /20		

11. Cautions on use (Continued)

11-4. Cleaning

- Please avoid using a brush for cleaning and do not wash the product in organic solvents such as acetone, Organic solvent (TCE, etc..) will damage the surface of LED. Please refer to following olvents and conditions.

Solvent: alcohol, 25°C max × 600sec max

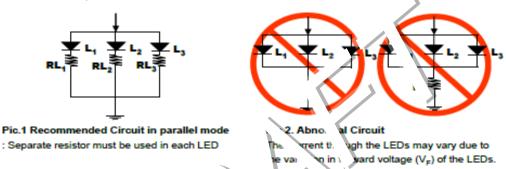
11-5. Handling

- Do not exceed 2kgf on top-Lens. (Do not exceed 1kgf side Lens)
- Do not drop above 30cm.

11-6. Heat Generation

- Thermal design of the end product is of paramount importance.
- Please consider the heat generation of the LED when making the system design.
- The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board. as well as other component.
- It necessary to avoid intense heat generation and operate within the maximum ratings given in the specification.

11-7. Static Electricity


- If over-voltage, which exceeds the absolute maximum rating, is applied to the LEDs, it will damage the LEDs and result in destruction. Since the LEDs are sensitive to the static electricity and surge, it is strongly recommended to use a wristband or anti-electrostatic glove when handling the LEDs and all devices, equipment and machinery must be properly grounded.
- It is recommended that precautions be taken against surge voltage to the equipment the mounts the LEDs.
- Damaged LEDs will show some unusual characteristics such as the leak current remarkably increases, the turn-on voltage becomes lower, or the LEDs do not light at the low current.
- When examining the final product, it is recommended to check whether the assembled LEDs are damaged by static electricity or not. Static-damaged LEDs can easily be found by light-on test or the VF test at a low current.

SPECIFICATION					
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716		
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	17 /20		

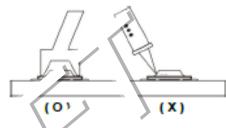
11. Cautions on use (Continued)

11-9. Recommended Circuit

- In designed a circuit, the current through each LED must not exceed the absolute maximum rating specified for each LED.
- In general, the LEDs have a variation of forward voltage. Using LEDs with different forward voltages in a circuit with on resistor for the complete circuit causes different forward currents for each LED. This may lead to a variation in brightness. In the worst case, some LED may be subjected to the stresses in excesses of the absolute maximum rating. To avoid brightness variation of LEDs, the use of matrix circuit with one resistor for each LED is recommended.

- LED should be operated in forward bias. drivin Circuit must be designed so that the LED is not subjected to either forward or revise which it is off. In particular, if a reverse voltage is continuously applied to a popular operation can cause migration resulting in LED damage.
- If reverse voltage is opplied to set the LL is, it will damage the Zener diode and LEDs and result in destruction.

11-10. Application limits of L. Oriver IC controller


- GaN based LED is relatively weak to electrical damage (such as static electricity and over current stress). Forward leakage of LED occurred by such damage in the forward low current region may result in turn-on-delay of Lighting Module, which is dependent on a specific function of driver IC.
- For reasons mentioned above, minimum current level (source start-up current) of LED driver IC must be more than 0.3 mA. LGIT cannot make a guarantee on the LED using in Driver IC with start up current level of < 0.3 mA.
- When parallel circuit LED driver IC is applied in Lighting Module, Hot spot may occur in low current operation region (dimming mode) by difference of LED voltage in low current region. So, driver IC with Individual LED controller is recommended.

SPECIFICATION					
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716		
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	18 /20		

11. Cautions on use (Continued)

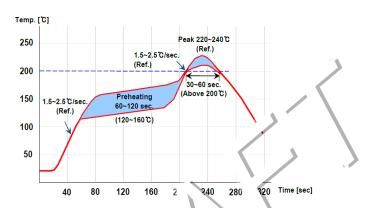
11-11. Repair

- Repairing should not be done after the LEDs have been soldered.
- When repairing is unavoidable, a double-head soldering iron should be used.
- If should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- When Soldering, do not put stress on the LEDs during heating customer must finish rework within 5sec. under 245 $^{\circ}$ C.
- The head of Iron can not touch copper foil.
- Twin-head type is preferred.

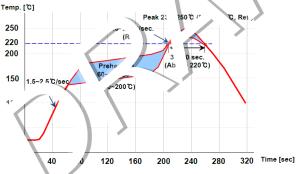
11-12. Safety Guideline for Human Eyes.

- Users should be cautioned not to sto at a ligh in is LLD product.
- Great care should be taken when fewing rectly e LED driven at high current or the LED with optical instruments, which may gree the nazard to your eyes.

11-13. Handling of static \ectricity


- These products are sellitive to static electricity charge. Please take measures to prevent any static electricity being product, such as the wearing of wristband or anti-static gloves when handling this product, and stall circuit protection device to drive circuit, if necessary.
- All devices, equipment and machinery must be properly grounded. It is recommended that precautions be taken against surge voltage to the equipment that mounts the LEDs.
- When inspecting the final products in which LEDs were assembled, it is recommended to check whether the assembled LEDs are damaged by static electricity or not
- It is easy to find static-damaged LEDs by a light-on test.

SPECIFICATION					
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716		
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	19 /20		


12. Reflow Soldering Characteristics

12-1. Soldering Conditions.

- The LEDs can be soldered in place using the reflow soldering method.
- LG Innotek cannot make a guarantee on the LEDs after they have been assembled using dip soldering method.
- Recommended soldering conditions.
- Pb Solder

- Pb-free Solder

- Although the recommende oldering conditions are specified in the above diagram, reflow or hand soldering at the lowest possible temperature is desirable for the LEDs.
- A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.
- Occasionally there is a brightness decrease caused by the influence of heat of ambient atmosphere during air reflow. It is recommended that the customer use the nitrogen reflow method.
- The encapsulated material of the LEDs is silicone, Therefore the LEDs have a soft surface on the top of the package. The pressure to the surface will be influence to the reliability of the LEDs.Precautions should be taken to avoid the strong pressure on the encapsulated part. So When using the chip mounter, the picking up nozzle that does not affect the silicone resin should be used.
- Reflow soldering should not be done more than two times.

SPECIFICATION					
MODEL	LEMWM18680LG00	DOCUMENT No	CLD-1716		
REG.DATE	2012. 04. 19	REV. No	0.0		
REV.DATE		PAGE	20 /20		

12. Reflow Soldering Characteristics

12-2. Soldering Iron

Basic spec is \leq 3sec when 350 °C. If temperature is higher, time shorter (+10 °C \rightarrow -1sec). Power dissipation of Iron should be smaller than 15W, and temperature should be controllable. Surface temperature of the device should be under 230 °C.

