

TV VERTICAL DEFLECTION OUTPUT CIRCUIT

- POWER AMPLIFIER
- FLYBACK GENERATOR
- **THERMAL PROTECTION**

DESCRIPTION

The TDA8172 is a monolithic integrated circuit in HEPTAWATTTM package. It is a high efficiency power booster for direct driving of vertical windings of TV yokes. It is intended for use in Color and B & W television as well as in monitors and displays.

PIN CONNECTIONS (top view)

BLOCK DIAGRAM

May 1993 **■ 7929237 0058298 650 ■** 1/4

91

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vs	Supply Voltage (pin 2)	35	V	
V ₅ , V ₆	Flyback Peak Voltage	60	V	
V ₃	Voltage at Pin 3	+ V _s		
V ₁ , V ₇	Amplifier Input Voltage	+ V _s - 0.5	٧	
l _o	Output Peak Current (non repetitive, t = 2 ms)	2.5	Α	
l _o	Output Peak Current at f = 50 or 60 Hz, t ≤ 10 µs	3	A	
lo	Output Peak Current at f = 50 or 60 Hz, t > 10 μs	2	Α	
l ₃	Pin 3 DC Current at V ₅ < V ₂	100	mA	
l ₃	Pin 3 Peak to Peak Flyback Current at f = 50 or 60 Hz, tfty ≤ 1.5 ms	3	Α	
Ptot	Total Power Dissipation at T _{case} = 90 °C	20	w	
T _{stg} , T _I	Storage and Junction Temperature	- 40, +150	°C	

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{th (⊢c)}	Thermal Resistance Junction-case M	lax.	3	°C/W

ELECTRICAL CHARACTERISTICS

(refer to the test circuits, $V_S = 35V$, $T_{amb} = 25$ °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
l ₂	Pin 2 Quiescent Current	$I_3 = 0, I_5 = 0$		8	16	mA	1a
16	Pln 6 Quiescent Current	l ₃ = 0, l ₅ = 0		16	36	mA	1a
l ₁	Amplifier Input Bias Current	V ₁ = 1 V, V ₇ = 2 V		- 0.1	- 1	μΑ	1a
		V ₁ = 2 V, V ₇ = 1 V		- 0.1	- 1	μA	1a
V _{3L}	Pin 3 Saturation Voltage to GND	l ₃ = 20 mA		1	1.5	٧	1c
V ₅	Quiescent Output Voltage	$V_s = 35V, R_a = 39 \text{ k}\Omega$		18		٧	1d
V _{5L}	Output Saturation Voltage to GND	l ₅ = 1.2 A		1	1.4	٧	1c
		I ₅ = 0.7 A		0.7	1	٧	1c
V _{5H}	Output Saturation Voltage to Supply	- l ₅ = 1.2 A		1.6	2.2	٧	1b
		- I ₅ = 0.7 A		1.3	1.8	V	1b
T,	Junction Temperature for Thermal Shut Down			140		°C	

72-03 TBL

7929237 0058299 597 🖿 -

Figure 1 : DC Test Circuits.

Figure 1 a : Measurement of I₁; I₂; I₆

Figure 1 b : Measurement of V_{5H}

S₁: (a) I₂ and I₆, (b) I₁

Figure 1 c : Measurement of V_{3L} ; V_{5L}

Figure 1 d : Measurement of V₅

 $S_1:(a)\ V_{3L}\ ;\ (b)\ V_{5L}$

7929237 0058300 039

3/4

93

Figure 2: AC Test Circuit

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the HEPTAWATTTM package attaching the heatsink is very simple, a screw or a com-

pression spring (clip) being sufficient.

Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces, since the tab is connected to Pin 4 which is ground.

Figure 3: Mounting Examples

4/4 _____ ₹929237 005830% T75 ■

94