TV VERTICAL DEFLECTION OUTPUT CIRCUIT - POWER AMPLIFIER - FLYBACK GENERATOR - **THERMAL PROTECTION** #### DESCRIPTION The TDA8172 is a monolithic integrated circuit in HEPTAWATTTM package. It is a high efficiency power booster for direct driving of vertical windings of TV yokes. It is intended for use in Color and B & W television as well as in monitors and displays. ## PIN CONNECTIONS (top view) #### **BLOCK DIAGRAM** May 1993 **■ 7929237 0058298 650 ■** 1/4 91 #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | | |-----------------------------------|--|---------------------------|------|--| | Vs | Supply Voltage (pin 2) | 35 | V | | | V ₅ , V ₆ | Flyback Peak Voltage | 60 | V | | | V ₃ | Voltage at Pin 3 | + V _s | | | | V ₁ , V ₇ | Amplifier Input Voltage | + V _s
- 0.5 | ٧ | | | l _o | Output Peak Current (non repetitive, t = 2 ms) | 2.5 | Α | | | l _o | Output Peak Current at f = 50 or 60 Hz, t ≤ 10 µs | 3 | A | | | lo | Output Peak Current at f = 50 or 60 Hz, t > 10 μs | 2 | Α | | | l ₃ | Pin 3 DC Current at V ₅ < V ₂ | 100 | mA | | | l ₃ | Pin 3 Peak to Peak Flyback Current at f = 50 or 60 Hz, tfty ≤ 1.5 ms | 3 | Α | | | Ptot | Total Power Dissipation at T _{case} = 90 °C | 20 | w | | | T _{stg} , T _I | Storage and Junction Temperature | - 40, +150 | °C | | ## THERMAL DATA | Symbol | Parameter | | Value | Unit | |----------------------|------------------------------------|------|-------|------| | R _{th (⊢c)} | Thermal Resistance Junction-case M | lax. | 3 | °C/W | ### **ELECTRICAL CHARACTERISTICS** (refer to the test circuits, $V_S = 35V$, $T_{amb} = 25$ °C unless otherwise specified) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | Fig. | |-----------------|--|--|------|-------|------|------|------| | l ₂ | Pin 2 Quiescent Current | $I_3 = 0, I_5 = 0$ | | 8 | 16 | mA | 1a | | 16 | Pln 6 Quiescent Current | l ₃ = 0, l ₅ = 0 | | 16 | 36 | mA | 1a | | l ₁ | Amplifier Input Bias Current | V ₁ = 1 V, V ₇ = 2 V | | - 0.1 | - 1 | μΑ | 1a | | | | V ₁ = 2 V, V ₇ = 1 V | | - 0.1 | - 1 | μA | 1a | | V _{3L} | Pin 3 Saturation Voltage to GND | l ₃ = 20 mA | | 1 | 1.5 | ٧ | 1c | | V ₅ | Quiescent Output Voltage | $V_s = 35V, R_a = 39 \text{ k}\Omega$ | | 18 | | ٧ | 1d | | V _{5L} | Output Saturation Voltage to GND | l ₅ = 1.2 A | | 1 | 1.4 | ٧ | 1c | | | | I ₅ = 0.7 A | | 0.7 | 1 | ٧ | 1c | | V _{5H} | Output Saturation Voltage to Supply | - l ₅ = 1.2 A | | 1.6 | 2.2 | ٧ | 1b | | | | - I ₅ = 0.7 A | | 1.3 | 1.8 | V | 1b | | T, | Junction Temperature for Thermal Shut Down | | | 140 | | °C | | 72-03 TBL 7929237 0058299 597 🖿 - Figure 1 : DC Test Circuits. Figure 1 a : Measurement of I₁; I₂; I₆ Figure 1 b : Measurement of V_{5H} S₁: (a) I₂ and I₆, (b) I₁ Figure 1 c : Measurement of V_{3L} ; V_{5L} Figure 1 d : Measurement of V₅ $S_1:(a)\ V_{3L}\ ;\ (b)\ V_{5L}$ 7929237 0058300 039 3/4 93 Figure 2: AC Test Circuit ## MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink. Thanks to the HEPTAWATTTM package attaching the heatsink is very simple, a screw or a com- pression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces, since the tab is connected to Pin 4 which is ground. Figure 3: Mounting Examples 4/4 _____ ₹929237 005830% T75 ■ 94